Automatic Test Data ... Research Projects Toolborne Integratio...

Automatic Dataflow-oriented Test Case Generation
for Object-oriented Software Systems by Evolutionary Algorithms

.gEAr - Dataflow oriented testcase generation with Evolutionary Algorithms

 

.gEAr-milestones

In spite of remarkably improved methods in software development, the increasing complexity of modern software systems still represents a main hindrance towards fault-free software development. Size and budget of today’s projects mostly forbid a complete formal verification, which in turn covers only the logical domain of the code but not the real environment, even in cases where verification is feasible. On this account, testing is still considered to be an important means of quality assurance previous to the final release. In order to increase the chances of revealing faults during the testing phase, test cases are selected according to different strategies: for functional testing, inputs are derived from the specified requirements, whilst for structural testing the code has to be executed as exhaustively as possible. In consequence of the complexity of the control structures, the identification of test data allowing to achieve high dataflow coverage is exceedingly time consuming. Checking the correctness of the test results has usually to be carried out by hand and therefore requires a high amount of effort. Therefore, the overall number of test cases is crucial, even if their generation can be performed at low cost, e. g. by means of a random generator.

The aim of the ongoing research project is to automate the generation of adequate sets of dataflow-oriented test cases and to evaluate the adequacy of different techniques with respect to both quality achieved and effort required. In various application areas evolutionary algorithms have revealed as providing suitable search and optimisation strategies. Previous related investigations based on genetic algorithms were restricted to simple control flow criteria (statement and branch coverage), to special purpose programming languages or to language subsets hardly transferable to real projects.

The research project deals with the following objectives:

Publications